Департамент образования Администрации города Ноябрьска Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №12» муниципального образования город Ноябрьск

«Рассмотрено» на заседании «Согласовано» методического учителей математики, информатики Вусу Лезина Ю.Ю. и ИКТ, физики, черчения и ИЗО Протокол № 1от «30» августа 2023 г. от «31» августа 2023 г. Руководитель методического объединения: Семеняченко Е.Ю.

объединения Заместитель директора

«Утверждено» Приказ № 105/3-од от «31» августа 2023 г.

РАБОЧАЯ ПРОГРАММА

по математике для 10-11 классов (углубленный уровень)

Пояснительная записка

Рабочая программа по «Математике: алгебра и начала анализа, геометрия» (углубленный уровень) составлена на основе: примерной основной образовательной программы среднего общего образования по математике (включая алгебру и начала математического анализа, геометрию): одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з).- 2016.; Геометрия. / [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др // Сборник рабочих программ: 10-11 классы.

Базовый и углубл.уровни: учеб.пособие для общеобразоват. организаций/ [сост. Т.А. Бурмистрова]. - М.:Просвещение, 2016.

Авторская программа

Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс (базовый и углубленные уровни): методическое пособие для учителей / А.Г. Мордкович, П.В. Семенов. -М.: Мнемозина, 2017 - 262с.:ил.

Алгебра и начала математического анализа. 11 класс (базовый и углубленные уровни): методическое пособие для учителей / А.Г. Мордкович, П.В. Семенов. -М.: Мнемозина, 2017 - 226с.:ил. ISBN 978-5-346-03977-8. Геометрия. Сборник рабочих программ. 10 - 11 классы. Базовый и углубленный уровни: учебное пособие для учителей общеобразват. организаций / сост. Т.А. Бурмистрова. - М.: Просвещение, 2016. - 143с.

Рабочая программа ориентирована на использование учебников: **Мордкович А.Г.** Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. организаций: базовый и углубленный уровни: В 2-х ч-х. Ч.1 /А.Г. Мордкович, П.В. Семенов. - М.: Мнемозина, 2020.

Мордкович А.Г. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. организаций: базовый и углубленный уровни: В 2-х ч-х. Ч.2 /А.Г. Мордковичи др.; под ред. А.Г. Мордковича. - М.: Мнемозина, 2020.

Мордкович А.Г. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. организаций: базовый и углубленный уровни: В 2-х ч-х. Ч.1 /А.Г. Мордкович, П.В. Семенов. - М.: Мнемозина, 2019.

Мордкович А.Г. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. организаций: базовый и углубленный уровни: В 2-х ч-х. Ч.2 /А.Г. Мордковичи др.; под ред. А.Г. Мордковича. - М.: Мнемозина, 2019.

Математика: алгебра и начала математического анализ, геометрия. Геометрия. 10-11 классы: учеб. для 10-11 кл. общеобразоват. организаций: базовый и углубл. уровни / [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.]. – М.: Просвещение, 2020.

Информация

о недельном и годовом количестве учебных часов, на которое рассчитана рабочая программа

Класс	Количество	Недельное количество часов	Годовое количество
	учебных недель		часов
10	35	6	210
11	34	6	204
			Итого: 414

Программой предусмотрено проведение практической части:

	10 класс	11 класс
Контрольные работы (в т.ч.	11	14
входной, рубежный. итоговый		
контроль)		
ВПР		
Промежуточная аттестация	1	1
(Итоговая работа) (количество		
часов и форма проведения)		
ИТОГО	12	15

Промежуточная аттестация проводится в соответствии с «Положением о формах, периодичности и порядке текущего контроля успеваемости и промежуточной аттестации учащихся» в форме, утвержденной учебным планом МБОУ «СОШ №12».

Форма обучения – очная, по необходимости (в период неспокойной эпидемиологической обстановки или в форс-мажорных обстоятельствах) с применением электронного обучения и дистанционных образовательных технологий согласно "Положению о реализации общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий МБОУ "СОШ №12".

Основными элементами системы ЭО и ДОТ являются:

- образовательные онлайн-платформы;
- цифровые образовательные ресурсы, размещенные на образовательных сайтах;
- видеоконференции; вебинары;
- Skype—общение; e-mail;
- облачные сервисы;
- электронные носители мультимедийных приложений к учебникам;
- электронные пособия, разработанные с учетом требований законодательства РФ об образовательной деятельности.

В рабочей программе в полном объеме представлены все дидактические единицы, предусмотренные $\Phi\Gamma OC$ COO, примерной программой по математике, разработанной в соответствии с требованиями $\Phi\Gamma OC$ COO.

Общая характеристика учебного курса

Математика играет важную роль в общей системе образования. Наряду с обеспечением высокой математической подготовки учащихся, которые в дальнейшем в своей профессиональной деятельности будут пользоваться математикой, важнейшей задачей обучения является обеспечение некоторого гарантированного уровня математической подготовки всех школьников независимо от специальности, которую ли изберут в дальнейшем. Для продуктивной деятельности в современном информационном мире требуется достаточно прочная математическая подготовка. Математика,

давно став языком науки и техники, в настоящее время все шире проникает в повседневную жизнь и обиходный язык, внедряется в традиционно далекие от нее области.

При изучении курса математики на углубленном уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», вводится линия «Начала математического анализа».

Изучение математики в старшей школе на углубленном уровне направлено на достижение следующих **Целей**:

- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Задачи:

- Систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
- Расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
- Развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
- Знакомство с основными идеями и методами математического анализа;
- Изучить параллельность прямых и плоскостей, параллельность плоскостей, перпендикулярность прямых и плоскостей;
- Расширить изучение основных свойств плоскости; взаимного расположения двух прямых, прямой и плоскости;
- Учить решать задачи на построение сечений, нахождение угла между прямой и плоскостью;
- Развить умение учащихся находить площади поверхности многогранников; объемы тел вращения; складывать векторы в пространстве;
- Формировать умение выполнять дополнительные построения, сечения, выбирать метод решения, проанализировав условие задачи;
- Научить владеть новыми понятиями, переводить аналитическую зависимость в наглядную форму и обратно;

Личностные, метапредметные и предметные результаты освоения предмета *личностные:*

- 1) сформированность мировоззрения, соответствующего современному уровню развития науки; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 2) готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;
- 3) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 4) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 5) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества;
- 6) осознанный выбор будущей профессии и возможность реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

метапредметные:

- 1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- 2) умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 3) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- 4) умение оценивать правильность выполнения учебной задачи, собственные возможности её решения;
- 5) владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- 6) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 7) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- 8) готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 9) умение использовать средства информационных и коммуникационных технологий (ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением

требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

- 10) владение языковыми средствами умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- 11) овладение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения;

предметные (базовый уровень):

- 1) сформированность представлений о геометрии как части мировой культуры и о месте геометрии в современной цивилизации, о способах описания на математическом языке явлений реального мира;
- 2) сформированность представлений о геометрических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
- 3) владение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира; развитие пространственных представлений, изобразительных умений, навыков геометрических построений;
- 4) владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
- 5) владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
- 6) владение навыками использования готовых компьютерных программ при решении задач.

Содержание курса «Алгебра и начала математического анализа» 10 класс Линия

<u>Алгебра</u>

Повторение алгебры за курс основной школы 6 часа. 1.

Действительные числа, 12 часов.

Целые и рациональные числа. Действительные числа. Бесконечно убывающая геометрическая прогрессия. Арифметический корень натуральной степени. Степень с рациональным и действительным показателем.

Основная цель — обобщить и систематизировать знания о действительных числах; сформировать понятие степени с действительным показателем; научить применять определение арифметического корня и степени, а также их свойства при выполнении вычислений и преобразовании выражений.

2. Числовые функции, 9 часов.

Определение числовой функции и способы её задания. Свойства функций. Периодические функции. Обратные функции.

3. Тригонометрические функции, 24 часа Числовая окружность на координатной плоскости. Синус, косинус, тангенс и котангенс. Тригонометрические функции числового и углового аргумента. Функции y=sin(x), y=cos(x), y=tg(x), y=ctg(x), их свойства и графики. Преобразование графиков тригонометрических функций. График гармонического колебания. Обратные тригонометрические функции.

4. Тригонометрические уравнения, 14 часов.

Простейшие тригонометрические уравнения и неравенства. Методы решения тригонометрических уравнений.

5. Преобразование тригонометрических выражений, 21 час.

Синус и косинус суммы и разности аргументов. Тангенс суммы и разности аргументов. Формулы приведения, двойного аргумента, понижения степени. Преобразование тригонометрических выражений. Методы решения тригонометрических выражений.

6. Комплексные числа, 9 часов.

Комплексные числа и операции над ними. Комплексные числа и координатная плоскость. Тригонометрическая форма записи комплексного числа. Комплексные числа и квадратные уравнения. Операции с комплексным числом.

7. Производная, 29 часов.

Числовые последовательности. Предел числовой последовательности и функции. Определение и вычисление производной. Дифференцирование сложной и обратной функций. Уравнение касательной. Применение производной для исследования функций. Построение графика функций. Нахождение наибольших и наименьших значений функции.

8. Комбинаторика и вероятность, 7 часов

Правило умножения. Перестановки и факториалы. Выбор нескольких элементов. Биноминальные коэффициенты. Случайные события и их вероятности.

8. Повторение курса алгебры и начал анализа, 9 часов.

Основная цель – повторить, систематизировать, закрепить и проконтролировать знания и умения по всем основным темам курса.

Линия Геометрия

1. Введение (аксиомы стереометрии и их следствия) 3 часа.

Представление раздела геометрии – стереометрии. Основные понятия стереометрии. Аксиомы стереометрии и их следствия. Многогранники: куб, параллелепипед, прямоугольный параллелепипед, призма, прямая призма, правильная призма, пирамида, правильная пирамида. Моделирование многогранников из разверток и с помощью геометрического конструктора.

2. Параллельность прямых и плоскостей 16 часов.

Пересекающиеся, параллельные и скрещивающиеся прямые в пространстве. Классификация взаимного расположения двух прямых в пространстве. Признак скрещивающихся прямых. Параллельность прямой и плоскости в пространстве. Классификация взаимного расположения прямой и плоскости. Признак параллельности прямой и плоскости. Параллельность двух плоскостей. Классификация взаимного расположения двух плоскостей. Признак параллельности двух плоскостей. Признак параллельности двух прямых в пространстве.

3. Перпендикулярность прямых и плоскостей 17 часов.

Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями.

4. Многогранники 14 часов.

Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники.

5. Некоторые сведения из планиметрии 12 часов

Углы и отрезки связанные с окружностью. Решение треугольников. Теорема Менелая и Чевы. Эллипс, гипербола и парабола.

Повторение 8 часов.

11 класс Линия

<u>Алгебра</u>

Повторение алгебры за курс основной школы 4 часа.

1. Многочлены, 10 часов.

Многочлены от одной переменной. Многочлены от нескольких переменных. Уравнения высшей степени.

2. Степени и корни. Степенные функции, 24 часов.

Корень n-ой степени действительного числа. Функции $y = \sqrt[n]{x}$, их свойства и графики. Свойства корня n-ой степени. Преобразование выражений, содержащих радикалы. Степень с рациональным показателем. Степенные функции, их свойства и графики. Извлечение корня комплексного числа.

3. Показательная и логарифмическая функции, 31 час.

Показательная функция, её свойства и график. Показательные уравнения и неравенства. Понятие логарифма. Логарифмическая функция, её свойства и график. Свойства логарифмов. Логарифмические уравнения и неравенства. Дифференцирование показательной и логарифмической функций.

4. Первообразная и интеграл, 9 часов.

Первообразная. Неопределенный интеграл. Определённый интеграл.

5. Элементы теории вероятностей и математической статистики, 9 часов.

Вероятность и геометрия. Независимые повторения испытаний с двумя исходами.

Статистические методы обработки информации. Гауссова кривая. Закон больших чисел.

6. Уравнения и неравенства. Системы уравнений и неравенств, 33 часов.

Равносильность уравнений. Общие методы решения уравнений. Равносильность неравенств. Уравнения и неравенства с модулями. Уравнения и неравенства со знаком радикала. Уравнения и неравенства с двумя переменными. Доказательство неравенств. Системы уравнений. Задачи с параметрами.

Повторение, 16 часов.

Линия Геометрия

Повторение геометрии за курс основной школы 3 часа. 1.

Цилиндр, конус и шар, 16 часов.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы. Взаимное расположение сферы и прямой. Сфера, вписанная в цилиндрическую поверхность. Сфера, вписанная в коническую поверхность. Сечения цилиндрической поверхности. Сечения конической поверхности.

2. Объемы тел, 17 часов.

Понятие объёма. Объём прямоугольного параллелепипеда. Объём прямой призмы. Объём цилиндра. Вычисление объёмов тел с помощью интеграла. Объём наклонной призмы. Объём пирамиды. Объём конуса. Объём шара. Объём шарового сегмента, шарового слоя и шарового сектора. Площадь сферы.

3. Векторы в пространстве, 6 часов.

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Сумма нескольких векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Разложение вектора на число. Компланарные векторы. Правило параллелепипеда. Разложение вектора по трём некомпланарным векторам.

4. Метод координат в пространстве, 15 часов.

Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами векторов и координатами точек. Простейшие задачи в координатах. Уравнение сферы. Угол между векторами. Скалярное произведение векторов. Вычисление углов между прямыми и плоскостями. Уравнение плоскости. Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос. Преобразование подобия.

Повторение, 14 часов.

Тематическое планирование 10 класс

№	дата проведения урока		Тема урока	Элементы содержания	Кол-во
	По	По			часов
	плану	факту			
			Повторение 6	у часов	
1			Повторение	Решать уравнения с одной	5
2				переменной; решать системы	
3				уравнений; решать квадратные	
4				уравнения.	
5				Определять область определения	
				функции; работать с графиком	
				функции и определять свойства	
				функции; уметь строить график	
				квадратичной функции.	
6			Входная контрольная		1
			работа.		
			Действительные ч	исла, 12 часов	
7			Натуральные и целые	Переводить бесконечную	1
			числа.	периодическую дробь в	
8			Простые и составные	обыкновенную дробь.	1
			числа. Деление с остатком.	Приводить примеры (давать	
9			Наибольший общий	определение) арифметических	1
			делитель и наименьшее	корней натуральной степени.	
			общее кратное натуральных	Применять правила действий с	
			чисел. Основная теорема	радикалами, выражениями со	
			арифметики.	степенями с рациональным	
10			Рациональные числа.	показателем при вычислениях и	1
11			Иррациональные числа.	преобразованиях выражений	2
_					
12					
13			Множество		1
			действительных чисел.		

14	Модуль действительных		2
_	чисел.		
15			
			т
16	Контрольная работа		1
	№1 по теме		
	«Действительные		
	числа».		
17	Метод математической		2
10	индукции		
18			
10	Числовые функции	л, 9 часов Г	
19	Определение и способы		2
_	задания функции.		
20			2
21	Свойства функции.		3
_			
23	П 1		1
24	Периодическая функция.		1
25	Обратная функция.		2
26	Взаимнообратные		
26	функции.		1
27	Контрольная работа №2 по теме «Числовые		1
	функции»		
28	Введение в стереомет	Перечислять основные фигуры в	1
20	Предмет стереометрии.	пространстве (точка, прямая,	1
20	Аксиомы стереометрии	плоскость), формулировать три	2
29	Некоторые следствия из	аксиомы об их взаимном	2
_	аксиом	расположении и иллюстрировать	
30		эти аксиомы примерами из	
		окружающей обстановки.	
		Формулировать и доказывать	
		теорему о плоскости,	
		проходящей через прямую и не	
		лежащую на ней точку, и	
		теорему о плоскости,	
		проходящей через две	
		пересекающиеся прямые.	
	Параллельность прямых и п.	лоскостей, 16 часов	
31	Параллельные прямые в	Формулировать определения	1
	пространстве	параллельных прямых в	
		пространстве, формулировать и	

32	Параллельность трёх	доказывать теоремы о	1
	прямых	параллельных прямых;	
		объяснять какие возможны	
33	Параллельность прямой и	- случаи взаимного расположения прямой и плоскости в	1
	плоскости	1 -	
		пространстве, и приводить	
24	D.	иллюстрирующие примеры из	1
34	Решение задач по теме	окружающей обстановки;	1
	«Параллельность прямых,	формулировать определение параллельных прямой и	
	прямой и плоскости»	плоскости, формулировать и	
		доказывать утверждения о	
		параллельности прямой и	
		плоскости (свойства и признак);	
		решать задачи на вычисление и	
		доказательство, связанные со	
		взаимным расположением	
		прямых и плоскостей.	
35	Canadamana and and an	Объяснять, какие возможны	1
36	Скрещивающиеся прямые	случаи взаимного расположения	1
30	Углы с сонаправленными	двух прямых	1
37	сторонами Угол можем правили	в пространстве, и приводить	1
38	Угол между прямыми.	иллюстрирующие примеры;	1
38	Решение задач по теме	формулировать определение	1
	«Взаимное расположение	скрещивающихся прямых,	
	прямых в пространстве.	формулировать и доказывать	
	Угол между двумя	теорему, выражающую признак	
	прямыми». <i>Контрольная</i> работа №3 по	скрещивающихся прямых, и	
	раоота м23 по	теорему о	
			T 1
	теме «Взаимное	плоскости, проходящей через	
	расположение прямых в	одну из	
	пространстве. Угол между двумя прямыми»	скрещивающихся прямых и	
	(20	параллельной другой прямой;	
	мин)	объяснять, какие два луча	
	,	называются сонаправленными,	
		формулировать и доказывать	
		теорему об углах с	
		сонаправленными сторонами;	
		объяснять, что называется углом	
		между пересекающимися	
		прямыми и углом между	
		скрещивающимися прямыми;	
		решать задачи на вычисление и	
		доказательство, связанные со	
		взаимным расположением двух	
		прямых и углом между ними	

39	Параллельные плоскости	Формулировать определение параллельных плоскостей, формулировать и доказывать утверждения о признаке и свойствах параллельных плоскостей, использовать эти утверждения при решении задач	1
40	Свойства параллельных плоскостей	j i zopadama upu pezieiiii oudu i	1
41	Тетраэдр	Объяснять, какая фигура называется тетраэдром и какая параллелепипедом, показывать на чертежах и моделях их элементы, изображать эти фигуры на рисунках, иллюстрировать с их помощью различные случаи взаимного расположения прямых и плоскостей в пространстве; формулировать и доказывать утверждения о свойствах параллелепипеда; объяснять, что называется сечением тетраэдра (параллелепипеда), решать задачи на построение сечений тетраэдра и параллелепипеда на чертеже	1
42	Параллелепипед		1
43	Задачи на построение сечений		1
44	Задачи на построение сечений		1
45	Контрольная работа №4 по теме «Параллельность прямых и плоскостей»		1
46	Зачет №1 по теме «Параллельность прямых и плоскостей»		1
	Тригонометрические ф	ункции, 24 часа	
47	Числовая окружность		2
48			
49	Числовая окружность на координатной плоскости		2
50			

51	Синус и косинус. Тангенс и	3
53	котангенс.	
54	Тригонометрические	2
_	функции числового	
55	аргумента.	
56	Тригонометрические	1
30	функции углового	
	аргумента	
57	Функции y=sin(x), y=cos(x),	3
_	их свойства и графики.	
59	их свойства и графики.	
60	Контрольная работа	1
	№5 no meme	
	«Тригонометрические	
	функции»	
61	Построение графика	2
_	функции y=mf(x)	
62	47	
63	Построение графика	2
_	функции y=f(kx)	_
64	ding i(n)	
65	График гармонического	1
	колебания	
66	Φ ункции y=tg(x), y=ctg(x),	2
_	их свойства и графики.	2
67	пи свопства и графики.	
68	Обратные	3
_	тригонометрические	
70	функции	
, •	Тригонометрические уравнения, 14 часов	
71	Простейшие	6
_	тригонометрические	Ŭ
76	уравнения и неравенства	
77	Методы решения	6
_	тригонометрических	
82	уравнений	
83	Контрольная работа №	2
_	6 по теме	
84	«Тригонометрические	
	уравнения»	
	Перпендикулярность прямых и плоскостей, 17 ча	ICOB

85 - 89	Перпендикулярность прямой и плоскости	Формулировать определение перпендикулярных прямых в пространстве; формулировать и доказывать лемму о перпендикулярности двух параллельных прямых к третьей прямой; формулировать определение прямой, перпендикулярной к плоскости, и приводить иллюстрирующие примеры из окружающей обстановки; формулировать и доказывать теоремы (прямую и обратную) о связи между параллельностью прямых и их перпендикулярностью к плоскости, теорему, выражающую признак перпендикулярности прямой и плоскости, и теорему о существовании и единственности прямой, проходящей через данную точку и перпендикулярной к данной плоскости; решать задачи на	5
		плоскости; решать задачи на вычисление и доказательство, связанные с	
		перпендикулярностью прямой и плоскости	
90	Перпендикуляр и	Объяснять, что такое	6
_	наклонные. Угол между	перпендикуляр и наклонная к	
95	прямой и плоскостью	плоскости, что называется	
		проекцией наклонной; что	
		называется расстоянием: от	
		точки до плоскости, между	
		параллельными плоскостями,	
		между параллельными прямой и	

			плоскостью, между	
			скрещивающимися прямыми;	
			формулировать и доказывать	
			теорему о трёх перпендикулярах	
			и применять её при решении	
			задач; объяснять, что такое	
			ортогональная проекция точки	
			(фигуры) на плоскость, и	
			доказывать, что проекцией	
			прямой на плоскость,	
			неперпендикулярную к этой	
			прямой, является прямая;	
			объяснять, что называется углом	
			между прямой и плоскостью и	
			каким свойством он обладает;	
			объяснять, что такое	
			центральная проекция точки	
06		П	(фигуры) на плоскость	1
96		Двугранный угол.	Объяснять, какая фигура	4
-		Перпендикулярность	называется двугранным углом	
99		плоскостей	и как он измеряется;	
			доказывать, что все линейные	
			углы двугранного угла равны	
			друг	
			другу; объяснять, что такое угол	
			между пересекающимися	
			плоскостями и в каких пределах	
			он изменяется; формулировать	
			определение взаимно	
			перпендикулярных плоскостей,	
			формулировать и доказывать	
			теорему о признаке	
			перпендикулярности двух	
			плоскостей; объяснять, какой	
			параллелепипед называется	
			прямоугольным, формулировать	
			и доказывать утверждения о его	
			свойствах; решать задачи на	
			вычисление и доказательство с	
			использованием теорем о	
			перпендикулярности прямых и	
			плоскостей, а также задачи на	
			построение сечений	
			прямоугольного	
			параллелепипеда на чертеже	
			Использовать компьютерные	
			программы при изучении	
			вопросов, связанных со	

				взаимным расположением	
				прямых и плоскостей в	
				пространстве	
				1	
			Контрольная работа №7		1
100			по теме «		
			Перпендикулярность		
			прямых и плоскостей»		
101			Зачет №2 по теме «		1
			Перпендикулярность		
			прямых и плоскостей»		
		Преоб	5 разование тригонометричес	ских выражений, 21 час	
102			Синус и косинус суммы и		3
_			разности аргументов.		
104					
105			Тангенс суммы и разности		2
_			аргументов.		
106					
107			Формулы приведения.		2
_			• •		
108					
109			Формулы двойного		3
_			аргумента. Формулы		
111			понижения степени.		
	I				1
112			Преобразование суммы		3
			тригонометрических		-
114			функций в произведение.		
			тутиции в произведение.		

115	Преобразование		2
_	произведения		
116	тригонометрических		
	функций в сумму.		
117	Преобразование выражения		1
/	A		
	$\sin(x) + B\cos(x)$ к виду С		
	$\sin(x+t)$		
118	Методы решения		3
_	тригонометрических		
120	уравнений.		
121	Контрольная работа №7		2
_	по теме «Преобразование		
122	тригонометрических		
	выражений».		
	Комплексные числ	а. 9 часов	
123	Комплексные числа и	.,	2
_	арифметические операции		
124	над ними.		
125	Комплексные числа и		1
	координатная плоскость.		
126	Тригонометрическая форма		2
_	записи комплексного числа.		
127			
128	Комплексные числа и		1
	квадратные уравнения.		
129	Возведение комплексного		2
_	числа в степень.		
130	Извлечение кубического		
	корня из комплексного		
	числа.		
131	Контрольная работа №8		1
	по теме «Комплексные		
	числа».		
	Многогранники, 1	14 часов	•
132	Понятие многогранника.	Объяснять, какая фигура	1
	Геометрическое тело.	называется многогранником и	
	Теорема Эйлера.	как называются его элементы,	
133	Призма. Пространственная	какой многогранник называется	1
	теорема Пифагора.	выпуклым, приводить примеры	

134	Решение задач по теме «Понятие многогранника. Призма».	многогранников; объяснять, какой многогранник называется призмой и как называются её элементы, какая призма называется прямой, наклонной, правильной, изображать призмы на рисунке; объяснять, что называется площадью полной (боковой) поверхности призмы и доказывать теорему о площади боковой поверхности прямой призмы; решать задачи на вычисление и доказательство, связанные с призмой	1
135	Пирамида.	Объяснять, какой многогранник	1
136	Правильная пирамида.	называется пирамидой и как	1
137	Усеченная пирамида.	называются её элементы, что	1
138	Решение задач по теме	называется площадью полной	1
	«Пирамида».	(боковой) поверхности	
		пирамиды; объяснять, какая	
		пирамида называется	
		правильной, доказывать утверждение о свойствах её	
		боковых рёбер и боковых граней	
		и теорему о площади боковой	
		поверхности правильной	
		пирамиды; объяснять, какой	
		многогранник называется	
		усечённой пирамидой и как	
		называются её элементы,	
		доказывать	
		теорему о площади боковой	
		поверхности правильной	
		усечённой пирамиды; решать	
		задачи на вычисление и	
		доказательство, связанные с	
		пирамидами, а также задачи на	
		построение сечений пирамид на	
139	Симметрия в простоиство	чертеже Объяснять, какие точки	1
140	Симметрия в пространстве. Понятие правильного	называются симметричными	1
170	многогранника.	относительно точки (прямой,	1
	Элементы симметрии	плоскости), что такое центр	
	правильных	(ось, плоскость) симметрии	
	_	, , , , , , , , , , , , , , , , , , , ,	
	многоугольников.	фигуры, приводить примеры	

гало
ыло
гало
ыло
гало
ыло
Б

164	Применение производной для		3
_	исследования функции.		
166			
167	Построение графиков		1 стало
_	функции.		2 было
168			
169	Применение производной		3 стало
	для		4 было
172	отыскания наибольших		
	И		
	наименьших значений		
	величин.		
173	Контрольная работа №11 по		стало
	теме «Исследование функции с		было
174			ОВІЛО
	помощью производной» инаторика и вероятность, 7 часов		
L			h
175	Правило умножения.		2
176	Комбинаторные задачи.		
176	Перестановки и факториалы.	_	
177	Выбор нескольких элементов.		стало
_	Биноминальные		было
178	коэффициенты.		
179	Случайные события и их		стало
	вероятности		было
181			
Неко	горые сведения из Планиметрии, 12 часов		
182	Углы и отрезки, связанные с	Формулировать и доказати	стало
-	окружностью	теоремы об угле между	было
185		касательной и хордой, об	5
		отрезках пересекающихся хорд	,
		о квадрате касательной	;
		выводить формулы для	I
		вычисления углов между двумя	I
		пересекающимися хордами	,
		между двумя секущими	
		приведенными из одной точки	
		формулировать и доказываті	5
		утверждения о свойствах и	1
		признаках вписанного	1
		описанного четырехугольников	;
		решать задачи с использованием	1
		изученных теорем и формул.	

186	Решение треугольников	Выводить формулы 4
-		выражающие медиану и
189		биссектрису треугольника через
		его стороны, а также различные
		формулы площади треугольника;
		формулировать и доказывать
		утверждения об окружности и
		прямой Эйлера; решать задачи,
		используя выведенные формулы.
190	Теорема Менелая и Чевы	Формулировать и доказыватьстало
-		теоремы Менелая и Чевы ибыло
191		использовать их при решении
		задач
192	Эллипс, гипербола и парабола	Формулировать определениестало
-		эллипса, гиперболы и параболы,было
193		выводить их канонические
		уравнения и изображать эти
		кривые на рисунке.
Итоговое повтор	рение, 17 часов	
194	Действительные числа.	Повторить, систематизировать стало
-	Степенная функция.	знания за курс 10 класса. было
195		
196	Тригонометрические уравнения.	3
-		
198		
199	Тригонометрические	стало
<u> </u>	неравенства.	было
200		
201	Итоговое повторение. Аксиомы	стало
-	стереометрии и их следствия.	было
202	Параллельность прямых и	
	плоскостей.	
203	Итоговое повторение.	стало
-	Перпендикулярность прямых и	было
205	плоскостей.	
206	Итоговое повто рение.	стало
	Многогранники.	было
208	1	
209	Промежуточн ая аттестация	1
	за курс матема тики 10 класса	
	<u> </u>	_ r

Тематическое планирование 11 класс

№	Дата п	роведения	Тема урока		Кол-во
		рока		Элементы содержания	часов
	По плану	По факту			1000
			Повторение 7	часов	
1			Повторение курса алгебры		3
_			и начала математического		
3			анализа за 10 класс		
4			Повторение курса		3
- 6			геометрии за 10 класс		
7			Входная контрольная		1
•			работа		
		•	Многочлены, 10) часов	•
8 –			Многочлены от одной		3
10			переменной		
11			Многочлены от нескольких		3
_			переменных		
13					2
14			Уравнения высшей степени		3
- 16					
17			Контрольная работа №1		1
			по теме «Многочлены»		
			Степени и корни. Степенн	ые функции, 24 часов	
18			Понятие корня п-й степени		2
_			из действительного числа		
19					
20			Функции корень п-й		3
_ 22			степени из х, их свойства и графики.		
23			Свойства корня п-ой		3
_			степени		
25					
26			Преобразование		4
_			выражений, содержащих		
29			радикалы.		
30			Контрольная работа №2		2
_ 2.1			по теме «Корень п-й		
31			степени из действительного числа»		
32			Понятие степени с любым		3
_			рациональным показателем		
34					

35	Степенные функции, их свойства и графики		4
38	свонетва и графики		
39	Извлечение корней из		2
_	комплексных чисел		
40			
41	70 7 30 3	I	1
41	Контрольная работа №3 по теме «Степень с		1
	по теме «Степень с любым рациональным		
	показателем»		
	Цилиндр, конус и ша	пр, 16 часов	
42	Понятие	Объяснять, что такое	1
	цилиндра	цилиндрическая поверхность, её	
		образующие и ось, какое тело	
		называется цилиндром и как	
43	Площадь поверхности	называются его элементы, как	2
_	цилиндра	получить цилиндр путём	
44	циянидра	вращения прямоугольника; изображать цилиндр и его	
		сечения плоскостью,	
		проходящей через ось,	
		плоскостью,	
		перпендикулярной к оси;	
		объяснять, что принимается за	
		площадь боковой поверхности	
		цилиндра, и выводить формулы	
		для вычисления боковой и	
		полной поверхностей цилиндра;	
		решать задачи на вычисление и	
		доказательство, связанные с	
1.5		цилиндром	
45	Понятие конуса. Площадь	Объяснять, что такое коническая	1
16	поверхности конуса	поверхность, её образующие,	1
46	Усеченный конус.	вершина и ось, какое тело	1

47	Решение задач по теме	называется конусом и как	2
	«Конус».	называются его элементы, как	
48	Ž	получить конус путём вращения	
		прямоугольного треугольника,	
		изображать конус и его сечения	
		плоскостью, проходящей через	
		ось, и плоскостью,	
		перпендикулярной к оси;	
		объяснять, что принимается за	
		площадь боковой поверхности	
		конуса, и выводить формулы для	
		вычисления площадей боковой и	
		полной поверхностей конуса;	
		объяснять, какое тело	
		называется усечённым конусом	
		и как его получить путём	
		вращения прямоугольной	
		трапеции, выводить формулу	
		для вычисления площади	
		боковой поверхности	
		усечённого конуса; решать	
		задачи на вычисление и	
		доказательство, связанные с	
		конусом и усечённым конусом	
49	Сфера и шар	Формулировать определения	1
50	Взаимное расположение	сферы и шара, их центра,	1
	сферы и плоскости	радиуса, диаметра; исследовать	
51	Касательная плоскость к	взаимное расположение сферы и	1
	сфере	плоскости, формулировать	
52	Площадь сферы	определение касательной	1
53	Решение задач по теме	плоскости к сфере,	3
	«Сфера и шар»	формулировать и доказывать	
55	1 1 1	теоремы о свойстве и признаке	
		касательной плоскости;	
		объяснять, что принимается за	
		площадь сферы и как она	
		выражается через радиус сферы;	
		решать простые задачи, в	
		которых фигурируют	
		комбинации многогранников и	
		тел вращения	
56	Контрольная работа №4		1
	по теме «Цилиндр, конус		
	и шар»		
57	Зачет №1 по теме		1
	«Цилиндр, конус и шар»		
По	казательная и логарифмиче	ская функции, 31 час	

58	Показательная функция, её		3
-	свойства и график		
60 61	Показательные уравнения		3
_	показательные уравнения		
63			
64	Показательные неравенства		2
_			
65 66	Понятие логарифма		2
_	попитие погарифиа		2
67			
68	Логарифмическая функция,		3
_	её свойства и график		
70 71	Контрольная работа		2
_	Nonmpoльная работа №5 по теме		2
72	«Показательная и		
	логарифмическая		
	функция»		
73	Свойства логарифмов		4
76			
77	Логарифмические		4
_	уравнения		
80			
81	Логарифмические		3
83	неравенства		
84	Дифференцирование		3
_	показательной и		
86	логарифмической функций		
87	Контрольная работа №6		2
_	по теме «Логарифмы»		
88	0517		
89	Объемы тел, 17 Понятие объема	часов Объяснять, как измеряются	1
90	Объем прямоугольного	объёмы тел, проводя аналогию с	1
	параллелепипеда	измерением площадей	1
	паршителингеда	многоугольников;	
		формулировать основные	
		свойства объёмов и выводить с	
		их помощью формулу объёма	
		прямоугольного	
01	06-	параллелепипеда	1
91	Объем прямой призмы	Формулировать и доказывать	1
92	Объем цилиндра	теоремы об объёме прямой	1

93	Решение задач на	призмы и объёме цилиндра;	1
	нахождение объемов	решать задачи, связанные с	
	призмы и цилиндра	вычислением объёмов этих тел	
94	Вычисление объёмов тел с	Выводить интегральную	1
	помощью определённого	формулу для вычисления	
	интеграла	объёмов тел и доказывать с её	
95	Объём наклонной призмы	помощью теоремы об объёме	1
96	Объём пирамиды	наклонной призмы, об объёме	1
97	Объём конуса	пирамиды, об объёме конуса;	1
98	Решение задач по теме	выводить формулы для	1
	«Объёмы наклонной	вычисления объёмов усечённой	
	призмы, пирамиды и	пирамиды и усечённого конуса;	
	конуса»	решать задачи, связанные с	
		вычислением объёмов этих тел	
99	Объем шара	Формулировать и доказывать	1
100	Площадь сферы	теорему об объёме шара и с её	1
101	Решение задач на	помощью выводить формулу	3
_	нахождение объема шара и	площади сферы; решать задачи с	
103	площади сферы	применением формул объёмов	
		различных тел	
[]			T
104	Контрольная работа №7		1
105	по теме «Объемы тел»		
105	Зачет №2 по теме «Объемы		1
	тел»		
105	Первообразная и инте	грал, 9 часов	
106	Первообразная и		3
_	неопределенный интеграл		
108			_
109	Определённый интеграл		5
_			
113			
114	Контрольная работа №8		1
	по теме «Первообразная и		
	интеграл»		
	лементы теории вероятностей и матем	атической статистики, 9 часов	
115	Вероятность и геометрия		2
_			
116			
117	Независимые повторения		3
_	испытаний с двумя		
119	исходами		_
120	Статистические методы		2
_	обработки информации		
121			
	· ·	1	

122	Гауссова кривая. Закон]	2
	больших чисел	· ·	
123			
	Векторы в пространс	тве, 6 часов.	
124	Понятие вектора. Равенство	онятие вектора. Равенство Формулировать определение 1	
	векторов.	вектора, его длины,	
		коллинеарных и равных	
		векторов, приводить примеры	
		физических векторных величин	
125	Сложение и вычитание	Объяснять, как вводятся	1
	векторов. Сумма	действия сложения векторов,	
	нескольких векторов.	вычитания векторов и	
126	Умножение вектора на	умножения вектора на число,	1
	число	какими свойствами они	
		обладают, что такое правило	
		треугольника, правило	
		параллелограмма и правило	
		многоугольника сложения	
		векторов; решать задачи,	
		связанные с действиями над	
		векторами	
127	Компланарные векторы.	Объяснять, какие векторы	1
	Правило параллелепипеда.	называются компланарными;	
128	Разложение вектора по трем	формулировать и доказывать	1
	не компланарным векторам	утверждение о признаке	
		компланарности трёх векторов;	
		объяснять, в чём состоит	
		правило параллелепипеда	
		сложения трёх некомпланарных	
		векторов; формулировать и	
		доказывать теорему о	
		разложении любого вектора по	
		трём данным некомпланарным	
		векторам; применять векторы	
		при решении геометрических	
		задач	
129	Зачет №3 по теме		1
	«Векторы»		
	Метод координат в простр	ранстве, 15 часов	T
130	Прямоугольная система	Объяснять, как вводится	1
	координат в пространстве.	прямоугольная система	
	Координаты вектора.	координат в пространстве, как	
	Связь между	определяются координаты точки	
	координатами векторов и	и как они называются, как	
	координатами точек.	определяются	

131	Простейшие задачи в	координаты вектора;	2
	координатах	формулировать и доказывать	
132		утверждения: о координатах	
133	Уравнение сферы	суммы и разности двух векторов,	1
	r r r r r r	о координатах произведения	
		вектора на число, о связи между	
		координатами вектора и	
		координатами его конца и	
		начала; выводить и использовать	
		при решении задач формулы	
		координат середины отрезка,	
		длины вектора и расстояния	
		между двумя точками; выводить	
		уравнение сферы данного	
		радиуса с центром в данной	
		точке	
134	Угол между векторами	Объяснять, как определяется	1
135	Скалярное произведение	угол между векторами;	1
	векторов	формулировать определение	1
136	-	скалярного произведения	2
130	Вычисление углов между	векторов; формулировать и	2
137	прямыми и плоскостями	доказывать утверждения о его	
	V	свойствах; объяснять, как	2
138	Уравнение плоскости	вычислить угол между двумя	2
120		прямыми, а также угол между	
139		прямыми, а также угол между прямой и плоскостью, используя	
		выражение скалярного	
		произведения векторов через их	
		1 1	
		координаты; применять	
		векторно-координатный метод	
		при решении геометрических	
140	Hayrman was was a conse	Задач	1
140	Центральная и осевая	Объяснять, что такое	1
1.41	симметрии 2 структура сум и сеттура	отображение пространства на себя и в каком случае оно	1
141	Зеркальная симметрия.		1
	Параллельный перенос	называется движением	
142	Преобразование подобия	пространства; объяснять, что	1
		такое центральная симметрия,	
		осевая симметрия, зеркальная	
		симметрия и параллельный	
		перенос, обосновывать	
		утверждения о том, что эти	
		отображения пространства на	
		себя являются движениями;	
		применять движения при	
		решении геометрических задач	

143	Контрольная работа №9	1
	по теме «Метод	
	координат в	
	пространстве. Движения»	
144	Зачет №4 по теме «Метод	1
	координат в пространстве.	
	Движения»	
Ура	внения и неравенства. Системы уравнений и неравен	ств, 33 часов
145	Равносильность уравнений	4
_		
148		
149	Общие методы решения	3
_	уравнений	
151		
152	Равносильность неравенств	3
154		
155	Уравнения и неравенства с	3
	модулями	
157		
158	Контрольная работа по теме	2
	«Уравнения и неравенства»	
159		
160	Уравнения и неравенства со	3
_	знаком радикала	
162		
163	Уравнения и неравенства с	2
_	двумя переменными	
164		
165	Доказательство неравенств	3
_		
167		
168	Системы уравнений	4
171		
172	Контрольная работа №10	1
	по теме «Системы	
	уравнений и неравенств»	
173	Задачи с параметрами	4
-		
176		
	Итоговое повторение, 16 + 14 часов	
177	Показательные уравнения и	3
	неравенства	
179		

180	Логарифмические	3
_	уравнения и неравенства	
182		
183	Уравнения и неравенства с	3
_	модулем	
185		
186	Уравнения с параметрами	3
_		
188		
189	Повторение. Построение	3
_	сечений	
191		
192	Повторение.	4
_	Координатновекторный	
195	метод	
196	Повторение. Расстояние	3
_	между двумя	
198	геометрическими	
	величинами.	
199	Повторение. Угол между	3
_	двумя геометрическими	
201	величинами.	
202	Решение задач. Подготовка	1
	к итоговой аттестации	
203	Полугодовая контрольная	1
	работа	
204	Промежуточная	1
	аттестация за курс	
	математики 11 класса.	

Материалы промежуточной аттестации

Пояснительная записка

Промежуточная аттестация по математике: алгебра и начала математического анализа, геометрия в 10 классах проводится в форме теста.

Характеристика структуры и содержание итоговой контрольной работы

Работа состоит из 7 заданий. Задания с кратким ответом предназначены для определения математических компетентностей учащихся 10 классов, содержатся задания по ключевым разделам курса алгебры и начал анализа, и геометрии 10 класса. Ответом на задания, является действительное число, промежуток или выражение.

Распределение заданий итоговой контрольной работы по содержанию, поверяемым умениям и способам деятельности.

Итоговая контрольная работа по математике содержит задания по ключевым разделам курса алгебры и начал анализа, и геометрии 10 класса. Распределение заданий приведено в таблице 1.

Таблица 1. Распределение заданий по разделам содержания

№ п/п	Название	Число заданий
1.	Алгебра.	5
2.	Геометрия.	2

Время выполнения итоговой контрольной работы

На выполнение итоговой контрольной работы отводится 40 минут (1 час).

Учащимся в начале итоговой контрольной работы выдается полный текст работы. Ответы на задания первой части могут фиксироваться непосредственно в тексте работы. Все необходимые вычисления, преобразования и чертежи учащиеся могут производить в черновике. Черновики не проверяются.

Система оценивания выполнения отдельных заданий и итоговой работы в целом

За выполнение каждого задания ученик получает определенное число баллов. Правильно выполненная работа оценивается 8 баллами. В случае правильного выполнения 1 - 6 задания учащемуся засчитывается 1 балл 7 задание 2 балла, если ответ неверный или отсутствует - 0 баллов. Задание считается выполненным правильно, если вписан верный

22

ответ. Ответ записывается в виде действительного числа, в виде промежутка или в виде выражения.

Таблица 2. Таблица перевода суммарного балла в 5-балльную шкалу

Отметка по 5-	«2»	«3»	«4»	«5»
балльной				
Первичный балл	Менее 4 баллов	4 - 5 баллов	6 - 7 баллов	8 баллов

Ответы к вариантам 1-4 итоговой контрольной работы для 10 классов

№ п/п задания	Вариант 1	Вариант 2	Вариант 3	Вариант 4	
	Часть 1				
1.	3		2	2	
2.	$(7; +\infty)$		$(2,5; +\infty)$	(2,5; 8]	
3.	1,9		1,5	1,8	
4.					
5.	5,5		1,4	4,5	
6.	7		15	4	
7.	$(1+\sqrt{3})a^2$		1056	1160	

Вариант 24

 $\frac{3}{\sqrt{162}}$ 1. Вычислите $\frac{\sqrt{3}\sqrt{6}}{\sqrt[3]{6}}$

- 2. Вычислите $\log_2(2x 5) \ge \log_5 2$
- 3. Найдите значение выражения $\cos^2\alpha + 4\sin^2\alpha$, если $\sin^2\alpha = 0.3$
- 4. Решите уравнение cos(x) = 0.5
- 5. Решите уравнение $7*10^{\lg(x)} = 5x + 11$.
- 6. Треугольник ABC правильный, О центр треугольника, ОМ перпендикулярно ABC, ОМ=√33. Высота треугольника равна 6. Найдите расстояние от точки М до вершин треугольника.
- 7. Вычислите площадь полной поверхности правильной четырехугольной пирамиды, все ребра которой равны а.

Вариант 2

4 <u>√567</u> 1. Вычислите ⁴√7

- 2. Вычислите $\log_{15}(5x-3) \le \log_{15}(4x-1)$
- 3. Найдите значение выражения $3\cos^2\alpha + \sin^2\alpha$, если $\cos^2\alpha = 0.3$

4. Решите уравнение $sin(x) = \frac{\sqrt{2}}{2}$

- 5. Решите уравнение $6*2^{\log 2}x = 8x 5$.
- 6. Треугольник ABC правильный, O центр треугольника, OM перпендикулярно ABC, OM= $2\sqrt{7}$. Высота треугольника равна 9. Найдите расстояние от точки M до вершин треугольника.
- 7. Вычислите площадь полной поверхности правильной треугольной пирамиды, все ребра которой равны **a**.

Вариант 3

 $\frac{5}{\sqrt{480}}$ 1. Вычислите $\sqrt[5]{15}$.

- 2. Вычислите $\log_6(4x-7) \ge \log_6(2x-5)$
- 3. Найдите значение выражения $\sin^2\alpha + 6\cos^2\alpha$, если $\cos^2\alpha = 0.1$

$$\sqrt{3}$$

- 4. Решите уравнение cos(x)=2
- 5. Решите уравнение $8*6^{\log 6}x = 3x + 7$.
- 6. В треугольнике ABC AC=CB=10 см, угол $A = 30^{0}$, BK перпендикуляр к плоскости треугольника, равный $5\sqrt{6}$. Найдите расстояние от точки K до плоскости AC.
- 7. Вычислите площадь полной поверхности прямоугольного параллелепипеда, диагональ которого равна 25 см, а диагонали боковых граней равны 15 см и $4\sqrt{34}$ см.

Вариант 4

$$\frac{6}{\sqrt{384}}$$
1. Вычислите $\frac{6\sqrt{6}}{\sqrt{6}}$

- 2. Вычислите $\log_4(2x-5) \le \log_4(x+3)$
- 3. Найдите значение выражения $5\sin^2\alpha + \cos^2\alpha$, если $\sin^2\alpha = 0.2$
- 4. Решите уравнение sin(x)=
- 5. Решите уравнение $5*7^{\log 7}x = 7x 9$.
- 6. ABCD ромб со стороной 4 см, угол ADC = 150^{0} , BM перпендикуляр к плоскости ромба, равный $2\sqrt{3}$ см. Найдите расстояние от точки M до AД.
- 7. Вычислите площадь полной поверхности прямоугольного параллелепипеда, диагональ которого равна $\sqrt{689}$ см, а диагонали боковых граней равны 25 см и 17

Материалы для проведения промежуточной аттестации

Контрольно-измерительные материалы для проведения промежуточной аттестации по математике в 11 классе составлены в соответствии с требованиями федерального государственного образовательного стандарта среднего общего образования по математике, общеобразовательной программой по математике Примерной программы среднего (полного) образования по математике. Базовый уровень // Математика.

Содержание образования: Сборник нормативно-правовых документов и методических материалов. – М.: Вентана-Граф, 2008.- с. 98-108.

Авторской программы Алгебра и начала математического анализа. 10-11 классы. Рабочие программы по учебникам А.Г. Мордковича, П.В. Семенова. Базовый и профильный уровни / авт.-сост. Н.А. Ким.- 2-е изд., перераб. – Волгоград: Учитель, 2013.

Авторской программы Алгебра и начала математического анализа. 10-11 классы. Рабочие программы по учебникам А.Г. Мордковича, П.В. Семенова. Базовый и профильный уровни / авт.-сост. Н.А. Ким.- 2-е изд., перераб. – Волгоград: Учитель, 2013.

Геометрия. 10-11 классы: программы общеобразовательных учреждений / сост.Т.А.Бурмистрова. – М.: Просвещение, 2009. Геометрия. 10-11 классы: программы общеобразовательных учреждений / сост.Т.А.Бурмистрова. – М.: Просвещение, 2009. реализуемой рабочей программой учебного предмета математика 11 класс.

КИМ разработаны в 3 вариантах, в каждом из которых *по 8 тестовых* заданий (часть 1) из них 1задание с развернутым ответом (часть 2).

Структура КИМа

№ части	№ задания	Проверяемые темы
1 1		Решение показательных уравнений
	2	Решение логарифмических уравнений
	3	Преобразование логарифмических выражений
	4	Производная функции
	5	Расчет физической величины по формуле
	6	Объемы тел
	7	Исследование функции с помощью производной
2 8 Решение тригонометрическ		Решение тригонометрических уравнений

Условия и порядок выполнения работы:

Критерии оценивания

За верное выполнение задания в части 1 №1-6 учащийся получает по 1 баллу; за задание 7 -2 балла.

Часть 2 - задание оценивается 2 баллами.

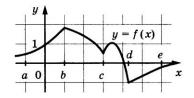
За неверный ответ или его отсутствие выставляется 0 баллов. Максимальное количество баллов,

которое может набрать экзаменуемый, правильно выполнивший задания работы - 11 баллов.

Отметка за выполнение работы выставляется в соответствии с критериями:

«5» − 10- 116

(4) – 6-9 6


«3» – 5 б

(2) - 1-46

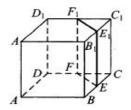
Вариант 1 №1.

- №2 Найдите корень уравнения $5^{4-x} = 25$.
- №3. Найдите корень уравнения $\log_6 (8-x) = \log_{36} 9$.
- №4. Найдите значение выражения $\log_6 144 \log_6 4$.

На рисунке изображён график функции y = f(x). Точки a, b, c, d и e задают на оси Ox четыре интервала. Пользуясь графиком, поставьте в соответствие каждому интервалу характеристику функции или её производной.

ИНТЕРВАЛЫ	ХАРАКТЕРИСТИКИ		
A) $(a; b)$	1) производная функции принимает как положитель-		
	ные, так и отрицательные значения на интервале		
\mathbf{B}) $(b; c)$	2) значения функции отрицательны в каждой точке		
	интервала		
B) $(c; d)$	3) значения производной функции отрицательны в		
	каждой точке интервала		
Γ) $(d; e)$	4) функция возрастает на всём интервале и прини-		
	мает положительные значения в каждой его точке		

В таблице под каждой буквой укажите соответствующий номер.


Α	Б	В	Г

В ходе распада радиоактивного изотопа его масса уменьшается по закону $m\left(t\right)=m_0\cdot 2^{-\frac{t}{T}}$, где $m_0(\text{мг})$ — начальная масса изотопа, t (мин) — время, прошедшее от начального момента, T (мин) — период полураспада. В начальный момент времени масса изотопа $m_0=200$ мг. Период его полураспада $T=\sqrt{2}$ мг. Через сколько минут масса изотопа будет равна 25 мг?

№6

№5.

В кубе $ABCDA_1B_1C_1D_1$ точки E, F, E_1 и F_1 являются серединами рёбер BC, DC, B_1C_1 и D_1C_1 соответственно. Объём призмы, отсекаемой от куба плоскостью EFF_1 , равен 21. Найдите объём куба.

№7.

Найдите наибольшее значение функции $y = (21 - x)e^{20-x}$ на отрезке [19; 21].

№8

а) Решите уравнение $15^{\cos x} = 3^{\cos x} \cdot (0,2)^{-\sin x}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку

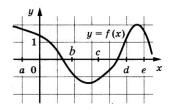
$$\left[-3\pi;-\frac{3\pi}{2}\right].$$

Вариант 2

№1

Решите уравнение $3^{x-3} = 27$.

*№*2.


Найдите корень уравнения $\log_8 2^{7\varkappa-8} = 2$.

№3

Найдите значение выражения $7\cdot 5^{\log_5 2}$.

№4.

На рисунке изображён график функции y = f(x). Точки a, b, c, d и e задают на оси Ox интервалы. Пользуясь графиком, поставьте в соответствие каждому интервалу характеристику функции или её производной.

интервалы

ХАРАКТЕРИСТИКИ

A) (a; b)

1) значения производной функции положительны в каждой точке интервала

 \mathbf{B}) (b; c)

 значения производной функции отрицательны в каждой точке интервала

B) (c; d)

 значения функции отрицательны в каждой точке интервала

 Γ) (d; e)

4) значения функции положительны в каждой точке интервала

Α	Б	В	Γ

№5.

№6.

№7.

В таблице под каждой буквой укажите соответствующий номер.

Коэффициент полезного действия некоторого двигателя определя-

ется формулой $\eta = \frac{T_1 - T_2}{T_1} \cdot 100 \ \%$. При каком значении температу-

ры нагревателя T_1 (в градусах Кельвина) КПД этого двигателя будет 80% , если температура холодильника $T_2=200$ К?

Шар, объём которого равен 14π , вписан в куб. Найдите объём куба.

- №8. Найдите наименьшее значение функции $y = e^{2x} 6e^x + 7$ на отрезке [0; 2].
 - а) Решите уравнение $\left(16^{\sin x}\right)^{\cos x} = \left(\frac{1}{4}\right)^{\sqrt{3}\sin x}$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[2\pi; \frac{7\pi}{2}\right].$